Source: pilot project 360° MSP – BBG und DB E&C point cloud agcuired with approx. 40 km/h

360° Multisensor Platform

Track-bound surveying and as-built documentation with mobile acquisition of point clouds, image panoramas and georadar scans

Dresden | Berli

A cooperation initiative of

DB Bahnbau Gruppe

DE Engineering & Consulting

DB Bahnbau Gruppe GmbH | DB Engineering & Consulting GmbH

Current challenges

Problem

Incomplete and outdated **as-built Detailed** image of the ground surface / subsurface using point clouds, panoramic images and georadar scans as the basis for as-built documents documentation Railroad-operational restrictions on data Comprehensive as-built documentation **without disrupting the rail** acquisition for planning (safety, access) operations Mandatory use of **BIM methodology** in the **Uniform data basis** as a foundation for participating trades and different DB Group without current data basis Obtaining **knowledge of the location and tracks** is time-consuming **Quantity determination** for gravel Combination of point cloud and georadar data allows more precise quantity supplement at DUA inaccurate determination Data sovereignty of safety-critical From the group for the group infrastructure

Detailed image of local conditions through panoramic images and point clouds

Solution

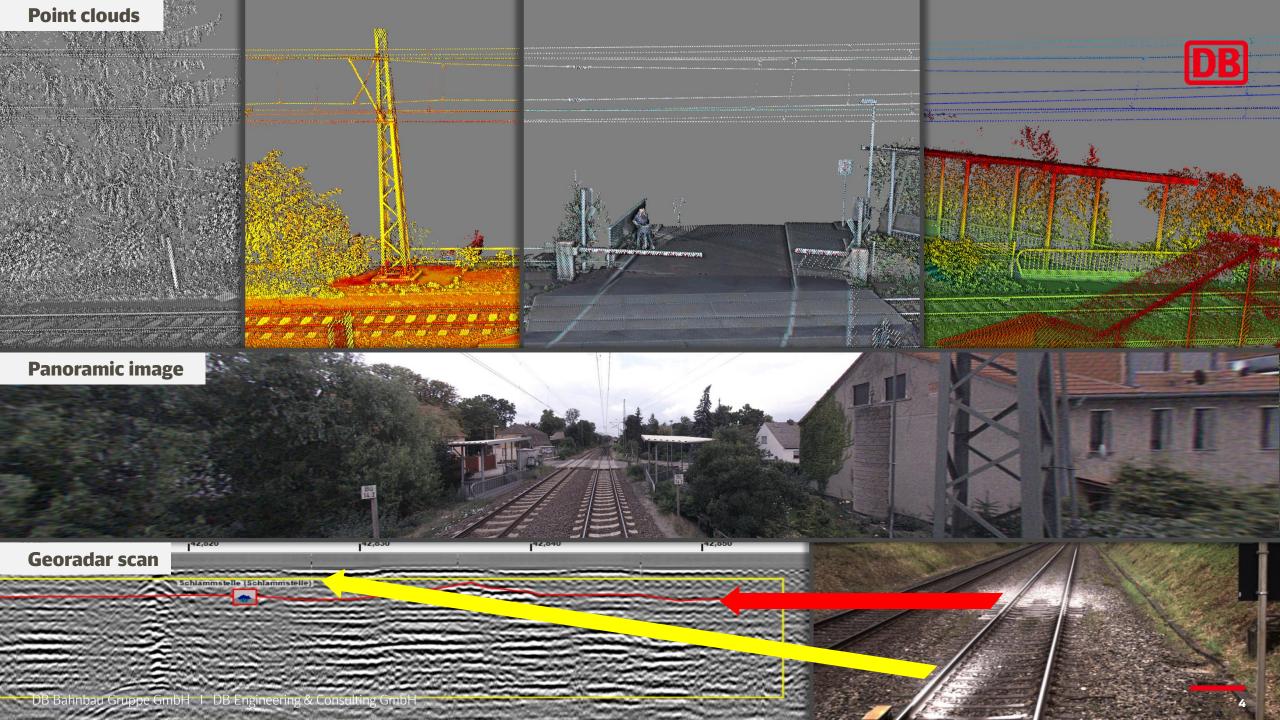
360° MSP

360° MSP

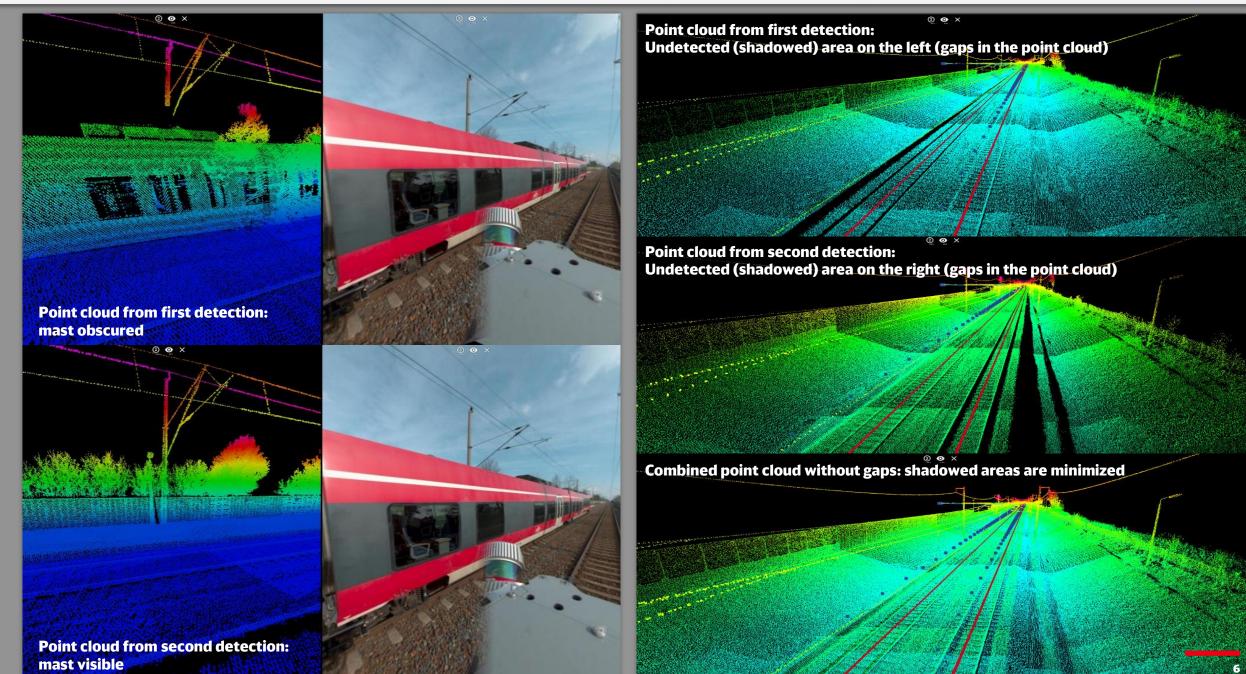
What do we use?

- Track vehicle
- Mobile mapping system
 (GNSS, laser scanner and panoramic camera)
- Georadar (optional)

What is the result?


3D acquisition of the surface (point cloud)

360° image capture of the environment (high resolution panoramic images)



View under the rail (ground scans of the georadar)

Minimization of shaded and obscured areas by running on both tracks (for double-track lines)

Benefits of the 360° MSP-data

Base data collection

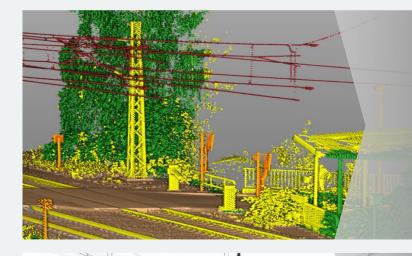
Preparation of DSTW (digital interlocking) technology, automated traffic control and automated driving

Planning basis

Use for BIM projects (as-built survey, route knowledge, model development)

DB inventory data archive

Establishment of a central archive of as-built data for all trades for 2D and 3D plans


Project communication

All work on one model

Individual utilization

- Detection for vegetation control
- Collision detection
- Visualizations
- Task management

Use of point clouds

- Spatial image digital capture of surfaces with reference to location or route
- Modeling basis efficient creation of 3D models and as-built plans
- Basic data model
 - **Constantly up-to-date** subsequent updating and expansion possible
 - Can be used across all trades integration of all as-built planning documents in a common base data model
 - **BIM-ready** optimal basis for BIM projects

Use of panoramic images

- Virtual route inspection
- Identification of problem areas in advance efficient and demand-oriented route inspection
- Support for planners better local knowledge
- Supplementation of point clouds facilitated 3D modeling
- Update of DB-VIS

Use of the georadar scan data

- Layer thickness measurement and cable detection detection of ballast bed and subgrade under the tracks (DUA)
- Detection of irregularities facilitated 3D modeling
- Optimized subsoil investigation identification and concentration on neuralgic areas

Potentials in performance phases

IDBI	ſ	DB	Ì
------	---	----	---

PP1 – Basic determination	Preliminary reconnaissance of the actual state IVL plan update Continuous recording of the subsurface (georadar)	360° MSP	Data acquisition (First detection)	Data usage
PP2 – Preliminary planning and cost estimation	Initial surveying (e.g. for traffic facilities) DTM modeling (BIM) Optimization of site/route surveys Route condition assessment for cost optimization			Data usage Benefits:
PP3 – Design planning and cost calculation	Data basis 4D construction phase planning/operations planning Validate cable and pipeline plans (georadar) Planning of detailed surveying operations Optimization of selective subsoil surveys	360° MSP	Data acquisition from first detection or optional Data acquisition	 Extensive actual data Reduction of track access and operat. interventions
PP4 – Approval planning	Creation of service specifications for expert services			 Reduction of time needed for data acquisition
PP5 – Execution plan PP6 – Preparation of allocation PP7 – Participation allocation	Quantity takeoff from DTM (BIM) DTM as planning basis for specialized models e.g. equipment engineering (OLA, LST for cable civil engineering) Collision check e.g. existing foundations Target/actual comparison (as-built model) Inventory documentation Quality control Data Collection at an early stage of maximum benefit and cost	the project	ct offers Y	 Multiple use of already recorded data in later PP
LP8 – Realization LP9 – Commissioning	Target/actual comparison (as-built model) Inventory documentation Quality control Data collection at an early and collection maximum benefit and collection	360° MSP	Data acquisition (follow-up detection)	Data usage
Operation of the facility	Maintenance measures Vegetation control Periodic monitoring	360° MSP	Data acquisition (Data from previous PP)	Data usage

360° MSP – Benefits

of the data acquisition

Flexibility

Use in regular operation, no track closures required

Efficiency

High data acquisition speed (up to 80 km/h)

of the data usage

Flexibility

Cross-trade use of data, models and inventory data

Actuality

Continuous supplementation and updating of data

Economic efficiency

Simultaneous acquisition with different sensor systems in one measurement run (150-200 km/d)

Eco-friendly

Minimal effort despite large acquisition areas and data diversity

Automation

Benefited by high degree of standardization

Standardization

Planning basis with uniform quality level